Summary

Total Articles Found: 4

Top sources:

Top Keywords:

Top Authors

Top Articles:

  • What’s New in Android Q Security
  • Queue the Hardening Enhancements
  • DNS-over-HTTP/3 in Android
  • Pixel's Proactive Approach to Security: Addressing Vulnerabilities in Cellular Modems

DNS-over-HTTP/3 in Android

Published: 2022-07-19 16:59:00

Popularity: 43

Author: Edward Fernandez

Keywords:

  • android security
  • android
  • Posted by Matthew Maurer and Mike Yu, Android team

    To help keep Android users’ DNS queries private, Android supports encrypted DNS. In addition to existing support for DNS-over-TLS, Android now supports DNS-over-HTTP/3 which has a number of improvements over DNS-over-TLS.

    Most network connections begin with a DNS lookup. While transport security may be applied to the connection itself, that DNS lookup has traditionally not been private by default: the base DNS protocol is raw UDP with no encryption. While the internet has migrated to TLS over time, DNS has a bootstrapping problem. Certificate verification relies on the domain of the other party, which requires either DNS itself, or moves the problem to DHCP (which may be maliciously controlled). This issue is mitigated by central resolvers like Google, Cloudflare, OpenDNS and Quad9, which allow devices to configure a single DNS resolver locally for every network, overriding what is offered through DHCP.

    In Android 9.0, we announced the Private DNS feature, which uses DNS-over-TLS (DoT) to protect DNS queries when enabled and supported by the server. Unfortunately, DoT incurs overhead for every DNS request. An alternative encrypted DNS protocol, DNS-over-HTTPS (DoH), is rapidly gaining traction within the industry as DoH has already been deployed by most public DNS operators, including the Cloudflare Resolver and Google Public DNS. While using HTTPS alone will not reduce the overhead significantly, HTTP/3 uses QUIC, a transport that efficiently multiplexes multiple streams over UDP using a single TLS session with session resumption. All of these features are crucial to efficient operation on mobile devices.

    DNS-over-HTTP/3 (DoH3) support was released as part of a Google Play system update, so by the time you’re reading this, Android devices from Android 11 onwards1 will use DoH3 instead of DoT for well-known2 DNS servers which support it. Which DNS service you are using is unaffected by this change; only the transport will be upgraded. In the future, we aim to support DDR which will allow us to dynamically select the correct configuration for any server. This feature should decrease the performance impact of encrypted DNS.

    Performance

    DNS-over-HTTP/3 avoids several problems that can occur with DNS-over-TLS operation:

    • As DoT operates on a single stream of requests and responses, many server implementations suffer from head-of-line blocking3. This means that if the request at the front of the line takes a while to resolve (possibly because a recursive resolution is necessary), responses for subsequent requests that would have otherwise been resolved quickly are blocked waiting on that first request. DoH3 by comparison runs each request over a separate logical stream, which means implementations will resolve requests out-of-order by default.
    • Mobile devices change networks frequently as the user moves around. With DoT, these events require a full renegotiation of the connection. By contrast, the QUIC transport HTTP/3 is based on can resume a suspended connection in a single RTT.
    • DoT intends for many queries to use the same connection to amortize the cost of TCP and TLS handshakes at the start. Unfortunately, in practice several factors (such as network disconnects or server TCP connection management) make these connections less long-lived than we might like. Once a connection is closed, establishing the connection again requires at least 1 RTT.

      In unreliable networks, DoH3 may even outperform traditional DNS. While unintuitive, this is because the flow control mechanisms in QUIC can alert either party that packets weren’t received. In traditional DNS, the timeout for a query needs to be based on expected time for the entire query, not just for the resolver to receive the packet.

    Field measurements during the initial limited rollout of this feature show that DoH3 significantly improves on DoT’s performance. For successful queries, our studies showed that replacing DoT with DoH3 reduces median query time by 24%, and 95th percentile query time by 44%. While it might seem suspect that the reported data is conditioned on successful queries, both DoT and DoH3 resolve 97% of queries successfully, so their metrics are directly comparable. UDP resolves only 83% of queries successfully. As a result, UDP latency is not directly comparable to TLS/HTTP3 latency because non-connection-oriented protocols have a different notion of what a "query" is. We have still included it for rough comparison.

    Memory Safety

    The DNS resolver processes input that could potentially be controlled by an attacker, both from the network and from apps on the device. To reduce the risk of security vulnerabilities, we chose to use a memory safe language for the implementation.

    Fortunately, we’ve been adding Rust support to the Android platform. This effort is intended exactly for cases like this — system level features which need to be performant or low level (both in this case) and which would carry risk to implement in C++. While we’ve previously launched Keystore 2.0, this represents our first foray into Rust in Mainline Modules. Cloudflare maintains an HTTP/3 library called quiche, which fits our use case well, as it has a memory-safe implementation, few dependencies, and a small code size. Quiche also supports use directly from C++. We considered this, but even the request dispatching service had sufficient complexity that we chose to implement that portion in Rust as well.

    We built the query engine using the Tokio async framework to simultaneously handle new requests, incoming packet events, control signals, and timers. In C++, this would likely have required multiple threads or a carefully crafted event loop. By leveraging asynchronous in Rust, this occurs on a single thread with minimal locking4. The DoH3 implementation is 1,640 lines and uses a single runtime thread. By comparison, DoT takes 1,680 lines while managing less and using up to 4 threads per DoT server in use.

    Safety and Performance — Together at Last

    With the introduction of Rust, we are able to improve both security and the performance at the same time. Likewise, QUIC allows us to improve network performance and privacy simultaneously. Finally, Mainline ensures that such improvements are able to make their way to more Android users sooner.

    Acknowledgements

    Special thanks to Luke Huang who greatly contributed to the development of this feature, and Lorenzo Colitti for his in-depth review of the technical aspects of this post.


    1. Some Android 10 devices which adopted Google Play system updates early will also receive this feature. 

    2. Google DNS and Cloudflare DNS at launch, others may be added in the future. 

    3. DoT can be implemented in a way that avoids this problem, as the client must accept server responses out of order. However, in practice most servers do not implement this reordering. 

    4. There is a lock used for the SSL context which is accessed once per DNS server, and another on the FFI when issuing a request. The FFI lock could be removed with changes to the C++ side, but has remained because it is low contention. 

    ...more

    Queue the Hardening Enhancements

    Published: 2019-05-09 15:35:00

    Popularity: 48

    Author: Eugene Liderman

    Keywords:

  • android security
  • Posted by Jeff Vander Stoep, Android Security & Privacy Team and Chong Zhang, Android Media Team

    [Cross-posted from the Android Developers Blog]

    Android Q Beta versions are now publicly available. Among the various new features introduced in Android Q are some important security hardening changes. While exciting new security features are added in each Android release, hardening generally refers to security improvements made to existing components.

    When prioritizing platform hardening, we analyze data from a number of sources including our vulnerability rewards program (VRP). Past security issues provide useful insight into which components can use additional hardening. Android publishes monthly security bulletins which include fixes for all the high/critical severity vulnerabilities in the Android Open Source Project (AOSP) reported through our VRP. While fixing vulnerabilities is necessary, we also get a lot of value from the metadata - analysis on the location and class of vulnerabilities. With this insight we can apply the following strategies to our existing components:

    • Contain: isolating and de-privileging components, particularly ones that handle untrusted content. This includes:
      • Access control: adding permission checks, increasing the granularity of permission checks, or switching to safer defaults (for example, default deny).
      • Attack surface reduction: reducing the number of entry/exit points (i.e. principle of least privilege).
      • Architectural decomposition: breaking privileged processes into less privileged components and applying attack surface reduction.
    • Mitigate: Assume vulnerabilities exist and actively defend against classes of vulnerabilities or common exploitation techniques.

    Here’s a look at high severity vulnerabilities by component and cause from 2018:

    Most of Android’s vulnerabilities occur in the media and bluetooth components. Use-after-free (UAF), integer overflows, and out of bounds (OOB) reads/writes comprise 90% of vulnerabilities with OOB being the most common.

    A Constrained Sandbox for Software Codecs

    In Android Q, we moved software codecs out of the main mediacodec service into a constrained sandbox. This is a big step forward in our effort to improve security by isolating various media components into less privileged sandboxes. As Mark Brand of Project Zero points out in his Return To Libstagefright blog post, constrained sandboxes are not where an attacker wants to end up. In 2018, approximately 80% of the critical/high severity vulnerabilities in media components occurred in software codecs, meaning further isolating them is a big improvement. Due to the increased protection provided by the new mediaswcodec sandbox, these same vulnerabilities will receive a lower severity based on Android’s severity guidelines.

    The following figure shows an overview of the evolution of media services layout in the recent Android releases.

    • Prior to N, media services are all inside one monolithic mediaserver process, and the extractors run inside the client.
    • In N, we delivered a major security re-architect, where a number of lower-level media services are spun off into individual service processes with reduced privilege sandboxes. Extractors are moved into server side, and put into a constrained sandbox. Only a couple of higher-level functionalities remained in mediaserver itself.
    • In O, the services are “treblized,” and further deprivileged that is, separated into individual sandboxes and converted into HALs. The media.codec service became a HAL while still hosting both software and hardware codec implementations.
    • In Q, the software codecs are extracted from the media.codec process, and moved back to system side. It becomes a system service that exposes the codec HAL interface. Selinux policy and seccomp filters are further tightened up for this process. In particular, while the previous mediacodec process had access to device drivers for hardware accelerated codecs, the software codec process has no access to device drivers.

    With this move, we now have the two primary sources for media vulnerabilities tightly sandboxed within constrained processes. Software codecs are similar to extractors in that they both have extensive code parsing bitstreams from untrusted sources. Once a vulnerability is identified in the source code, it can be triggered by sending a crafted media file to media APIs (such as MediaExtractor or MediaCodec). Sandboxing these two services allows us to reduce the severity of potential security vulnerabilities without compromising performance.

    In addition to constraining riskier codecs, a lot of work has also gone into preventing common types of vulnerabilities.

    Bound Sanitizer

    Incorrect or missing memory bounds checking on arrays account for about 34% of Android’s userspace vulnerabilities. In cases where the array size is known at compile time, LLVM’s bound sanitizer (BoundSan) can automatically instrument arrays to prevent overflows and fail safely.

    BoundSan instrumentation

    BoundSan is enabled in 11 media codecs and throughout the Bluetooth stack for Android Q. By optimizing away a number of unnecessary checks the performance overhead was reduced to less than 1%. BoundSan has already found/prevented potential vulnerabilities in codecs and Bluetooth.

    More integer sanitizer in more places

    Android pioneered the production use of sanitizers in Android Nougat when we first started rolling out integer sanization (IntSan) in the media frameworks. This work has continued with each release and has been very successful in preventing otherwise exploitable vulnerabilities. For example, new IntSan coverage in Android Pie mitigated 11 critical vulnerabilities. Enabling IntSan is challenging because overflows are generally benign and unsigned integer overflows are well defined and sometimes intentional. This is quite different from the bound sanitizer where OOB reads/writes are always unintended and often exploitable. Enabling Intsan has been a multi year project, but with Q we have fully enabled it across the media frameworks with the inclusion of 11 more codecs.

    IntSan Instrumentation

    IntSan works by instrumenting arithmetic operations to abort when an overflow occurs. This instrumentation can have an impact on performance, so evaluating the impact on CPU usage is necessary. In cases where performance impact was too high, we identified hot functions and individually disabled IntSan on those functions after manually reviewing them for integer safety.

    BoundSan and IntSan are considered strong mitigations because (where applied) they prevent the root cause of memory safety vulnerabilities. The class of mitigations described next target common exploitation techniques. These mitigations are considered to be probabilistic because they make exploitation more difficult by limiting how a vulnerability may be used.

    Shadow Call Stack

    LLVM’s Control Flow Integrity (CFI) was enabled in the media frameworks, Bluetooth, and NFC in Android Pie. CFI makes code reuse attacks more difficult by protecting the forward-edges of the call graph, such as function pointers and virtual functions. Android Q uses LLVM’s Shadow Call Stack (SCS) to protect return addresses, protecting the backwards-edge of control flow graph. SCS accomplishes this by storing return addresses in a separate shadow stack which is protected from leakage by storing its location in the x18 register, which is now reserved by the compiler.

    SCS Instrumentation

    SCS has negligible performance overhead and a small memory increase due to the separate stack. In Android Q, SCS has been turned on in portions of the Bluetooth stack and is also available for the kernel. We’ll share more on that in an upcoming post.

    eXecute-Only Memory

    Like SCS, eXecute-Only Memory (XOM) aims at making common exploitation techniques more expensive. It does so by strengthening the protections already provided by address space layout randomization (ASLR) which in turn makes code reuse attacks more difficult by requiring attackers to first leak the location of the code they intend to reuse. This often means that an attacker now needs two vulnerabilities, a read primitive and a write primitive, where previously just a write primitive was necessary in order to achieve their goals. XOM protects against leaks (memory disclosures of code segments) by making code unreadable. Attempts to read execute-only code results in the process aborting safely.

    Tombstone from a XOM abort

    Starting in Android Q, platform-provided AArch64 code segments in binaries and libraries are loaded as execute-only. Not all devices will immediately receive the benefit as this enforcement has hardware dependencies (ARMv8.2+) and kernel dependencies (Linux 4.9+, CONFIG_ARM64_UAO). For apps with a targetSdkVersion lower than Q, Android’s zygote process will relax the protection in order to avoid potential app breakage, but 64 bit system processes (for example, mediaextractor, init, vold, etc.) are protected. XOM protections are applied at compile-time and have no memory or CPU overhead.

    Scudo Hardened Allocator

    Scudo is a dynamic heap allocator designed to be resilient against heap related vulnerabilities such as:

    • Use-after-frees: by quarantining freed blocks.
    • Double-frees: by tracking chunk states.
    • Buffer overflows: by check summing headers.
    • Heap sprays and layout manipulation: by improved randomization.

    Scudo does not prevent exploitation but rather proactively manages memory in a way to make exploitation more difficult. It is configurable on a per-process basis depending on performance requirements. Scudo is enabled in extractors and codecs in the media frameworks.

    Tombstone from Scudo aborts

    Contributing security improvements to Open Source

    AOSP makes use of a number of Open Source Projects to build and secure Android. Google is actively contributing back to these projects in a number of security critical areas:

    Thank you to Ivan Lozano, Kevin Deus, Kostya Kortchinsky, Kostya Serebryany, and Mike Antares for their contributions to this post.

    ...more

    What’s New in Android Q Security

    Published: 2019-05-09 15:35:00

    Popularity: 125

    Author: Eugene Liderman

    Keywords:

  • android security
  • Posted by Rene Mayrhofer and Xiaowen Xin, Android Security & Privacy Team

    [Cross-posted from the Android Developers Blog]

    With every new version of Android, one of our top priorities is raising the bar for security. Over the last few years, these improvements have led to measurable progress across the ecosystem, and 2018 was no different.

    In the 4th quarter of 2018, we had 84% more devices receiving a security update than in the same quarter the prior year. At the same time, no critical security vulnerabilities affecting the Android platform were publicly disclosed without a security update or mitigation available in 2018, and we saw a 20% year-over-year decline in the proportion of devices that installed a Potentially Harmful App. In the spirit of transparency, we released this data and more in our Android Security & Privacy 2018 Year In Review.

    But now you may be asking, what’s next?

    Today at Google I/O we lifted the curtain on all the new security features being integrated into Android Q. We plan to go deeper on each feature in the coming weeks and months, but first wanted to share a quick summary of all the security goodness we’re adding to the platform.

    Encryption

    Storage encryption is one of the most fundamental (and effective) security technologies, but current encryption standards require devices have cryptographic acceleration hardware. Because of this requirement many devices are not capable of using storage encryption. The launch of Adiantum changes that in the Android Q release. We announced Adiantum in February. Adiantum is designed to run efficiently without specialized hardware, and can work across everything from smart watches to internet-connected medical devices.

    Our commitment to the importance of encryption continues with the Android Q release. All compatible Android devices newly launching with Android Q are required to encrypt user data, with no exceptions. This includes phones, tablets, televisions, and automotive devices. This will ensure the next generation of devices are more secure than their predecessors, and allow the next billion people coming online for the first time to do so safely.

    However, storage encryption is just one half of the picture, which is why we are also enabling TLS 1.3 support by default in Android Q. TLS 1.3 is a major revision to the TLS standard finalized by the IETF in August 2018. It is faster, more secure, and more private. TLS 1.3 can often complete the handshake in fewer roundtrips, making the connection time up to 40% faster for those sessions. From a security perspective, TLS 1.3 removes support for weaker cryptographic algorithms, as well as some insecure or obsolete features. It uses a newly-designed handshake which fixes several weaknesses in TLS 1.2. The new protocol is cleaner, less error prone, and more resilient to key compromise. Finally, from a privacy perspective, TLS 1.3 encrypts more of the handshake to better protect the identities of the participating parties.

    Platform Hardening

    Android utilizes a strategy of defense-in-depth to ensure that individual implementation bugs are insufficient for bypassing our security systems. We apply process isolation, attack surface reduction, architectural decomposition, and exploit mitigations to render vulnerabilities more difficult or impossible to exploit, and to increase the number of vulnerabilities needed by an attacker to achieve their goals.

    In Android Q, we have applied these strategies to security critical areas such as media, Bluetooth, and the kernel. We describe these improvements more extensively in a separate blog post, but some highlights include:

    • A constrained sandbox for software codecs.
    • Increased production use of sanitizers to mitigate entire classes of vulnerabilities in components that process untrusted content.
    • Shadow Call Stack, which provides backward-edge Control Flow Integrity (CFI) and complements the forward-edge protection provided by LLVM’s CFI.
    • Protecting Address Space Layout Randomization (ASLR) against leaks using eXecute-Only Memory (XOM).
    • Introduction of Scudo hardened allocator which makes a number of heap related vulnerabilities more difficult to exploit.

    Authentication

    Android Pie introduced the BiometricPrompt API to help apps utilize biometrics, including face, fingerprint, and iris. Since the launch, we’ve seen a lot of apps embrace the new API, and now with Android Q, we’ve updated the underlying framework with robust support for face and fingerprint. Additionally, we expanded the API to support additional use-cases, including both implicit and explicit authentication.

    In the explicit flow, the user must perform an action to proceed, such as tap their finger to the fingerprint sensor. If they’re using face or iris to authenticate, then the user must click an additional button to proceed. The explicit flow is the default flow and should be used for all high-value transactions such as payments.

    Implicit flow does not require an additional user action. It is used to provide a lighter-weight, more seamless experience for transactions that are readily and easily reversible, such as sign-in and autofill.

    Another handy new feature in BiometricPrompt is the ability to check if a device supports biometric authentication prior to invoking BiometricPrompt. This is useful when the app wants to show an “enable biometric sign-in” or similar item in their sign-in page or in-app settings menu. To support this, we’ve added a new BiometricManager class. You can now call the canAuthenticate() method in it to determine whether the device supports biometric authentication and whether the user is enrolled.

    What’s Next?

    Beyond Android Q, we are looking to add Electronic ID support for mobile apps, so that your phone can be used as an ID, such as a driver’s license. Apps such as these have a lot of security requirements and involves integration between the client application on the holder’s mobile phone, a reader/verifier device, and issuing authority backend systems used for license issuance, updates, and revocation.

    This initiative requires expertise around cryptography and standardization from the ISO and is being led by the Android Security and Privacy team. We will be providing APIs and a reference implementation of HALs for Android devices in order to ensure the platform provides the building blocks for similar security and privacy sensitive applications. You can expect to hear more updates from us on Electronic ID support in the near future.

    Acknowledgements: This post leveraged contributions from Jeff Vander Stoep and Shawn Willden

    ...more

    Pixel's Proactive Approach to Security: Addressing Vulnerabilities in Cellular Modems

    Published: 2024-10-03 16:59:00

    Popularity: 6

    Author: Edward Fernandez

    Keywords:

  • android
  • android security
  • pixel
  • 🤖: ""Secure Signal""

    Posted by Sherk Chung, Stephan Chen, Pixel team, and Roger Piqueras Jover, Ivan Lozano, Android team

    Pixel phones have earned a well-deserved reputation for being security-conscious. In this blog, we'll take a peek under the hood to see how Pixel mitigates common exploits on cellular basebands.

    Smartphones have become an integral part of our lives, but few of us think about the complex software that powers them, especially the cellular baseband – the processor on the device responsible for handling all cellular communication (such as LTE, 4G, and 5G). Most smartphones use cellular baseband processors with tight performance constraints, making security hardening difficult. Security researchers have increasingly exploited this attack vector and routinely demonstrated the possibility of exploiting basebands used in popular smartphones.

    The good news is that Pixel has been deploying security hardening mitigations in our basebands for years, and Pixel 9 represents the most hardened baseband we've shipped yet. Below, we’ll dive into why this is so important, how specifically we’ve improved security, and what this means for our users.

    The Cellular Baseband

    The cellular baseband within a smartphone is responsible for managing the device's connectivity to cellular networks. This function inherently involves processing external inputs, which may originate from untrusted sources. For instance, malicious actors can employ false base stations to inject fabricated or manipulated network packets. In certain protocols like IMS (IP Multimedia Subsystem), this can be executed remotely from any global location using an IMS client.

    The firmware within the cellular baseband, similar to any software, is susceptible to bugs and errors. In the context of the baseband, these software vulnerabilities pose a significant concern due to the heightened exposure of this component within the device's attack surface. There is ample evidence demonstrating the exploitation of software bugs in modem basebands to achieve remote code execution, highlighting the critical risk associated with such vulnerabilities.

    The State of Baseband Security

    Baseband security has emerged as a prominent area of research, with demonstrations of software bug exploitation featuring in numerous security conferences. Many of these conferences now also incorporate training sessions dedicated to baseband firmware emulation, analysis, and exploitation techniques.

    Recent reports by security researchers have noted that most basebands lack exploit mitigations commonly deployed elsewhere and considered best practices in software development. Mature software hardening techniques that are commonplace in the Android operating system, for example, are often absent from cellular firmwares of many popular smartphones.

    There are clear indications that exploit vendors and cyber-espionage firms abuse these vulnerabilities to breach the privacy of individuals without their consent. For example, 0-day exploits in the cellular baseband are being used to deploy the Predator malware in smartphones. Additionally, exploit marketplaces explicitly list baseband exploits, often with relatively low payouts, suggesting a potential abundance of such vulnerabilities. These vulnerabilities allow attackers to gain unauthorized access to a device, execute arbitrary code, escalate privileges, or extract sensitive information.

    Recognizing these industry trends, Android and Pixel have proactively updated their Vulnerability Rewards Program in recent years, placing a greater emphasis on identifying and addressing exploitable bugs in connectivity firmware.

    Building a Fortress: Proactive Defenses in the Pixel Modem

    In response to the rising threat of baseband security attacks, Pixel has incrementally incorporated many of the following proactive defenses over the years, with the Pixel 9 phones (Pixel 9, Pixel 9 Pro, Pixel 9 Pro XL and Pixel 9 Pro Fold) showcasing the latest features:

    • Bounds Sanitizer: Buffer overflows occur when a bug in code allows attackers to cram too much data into a space, causing it to spill over and potentially corrupt other data or execute malicious code. Bounds Sanitizer automatically adds checks around a specific subset of memory accesses to ensure that code does not access memory outside of designated areas, preventing memory corruption.
    • Integer Overflow Sanitizer: Numbers matter, and when they get too large an “overflow” can cause them to be incorrectly interpreted as smaller values. The reverse can happen as well, a number can overflow in the negative direction as well and be incorrectly interpreted as a larger value. These overflows can be exploited by attackers to cause unexpected behavior. Integer Overflow Sanitizer adds checks around these calculations to eliminate the risk of memory corruption from this class of vulnerabilities.
    • Stack Canaries: Stack canaries are like tripwires set up to ensure code executes in the expected order. If a hacker tries to exploit a vulnerability in the stack to change the flow of execution without being mindful of the canary, the canary "trips," alerting the system to a potential attack.
    • Control Flow Integrity (CFI): Similar to stack canaries, CFI makes sure code execution is constrained along a limited number of paths. If an attacker tries to deviate from the allowed set of execution paths, CFI causes the modem to restart rather than take the unallowed execution path.
    • Auto-Initialize Stack Variables: When memory is designated for use, it’s not normally initialized in C/C+ as it is expected the developer will correctly set up the allocated region. When a developer fails to handle this correctly, the uninitialized values can leak sensitive data or be manipulated by attackers to gain code execution. Pixel phones automatically initialize stack variables to zero, preventing this class of vulnerabilities for stack data.

    We also leverage a number of bug detection tools, such as address sanitizer, during our testing process. This helps us identify software bugs and patch them prior to shipping devices to our users.

    The Pixel Advantage: Combining Protections for Maximum Security

    Security hardening is difficult and our work is never done, but when these security measures are combined, they significantly increase Pixel 9’s resilience to baseband attacks.

    Pixel's proactive approach to security demonstrates a commitment to protecting its users across the entire software stack. Hardening the cellular baseband against remote attacks is just one example of how Pixel is constantly working to stay ahead of the curve when it comes to security.

    Special thanks to our colleagues who supported our cellular baseband hardening efforts: Dominik Maier, Shawn Yang, Sami Tolvanen, Pirama Arumuga Nainar, Stephen Hines, Kevin Deus, Xuan Xing, Eugene Rodionov, Stephan Somogyi, Wes Johnson, Suraj Harjani, Morgan Shen, Valery Wu, Clint Chen, Cheng-Yi He, Estefany Torres, Hungyen Weng, Jerry Hung, Sherif Hanna

    ...more

    end